APPLICATION OF PRINCIPAL COMPONENTS ANALYSIS TO THE EVALUATION AND SELECTION OF ELUENT SYSTEMS FOR THE THIN-LAYER CHROMATOGRAPHY OF BASIC AND NEUTRAL DRUGS

GIUSEPPE MUSUMARRA*, GIUSEPPE SCARLATA and GIUSEPPE CIRMA
Istituto Dipartimentale di Chimica e Chimica Industriale, Università di Catania, Viale Andrea Doria 6, 95125 Catunia (Italy)
GUIDO ROMANO and SILVANA PALAZZO
Istituto di Medicina Legale e delle Assicurazioni, Università di Catania, Via Biblioteca 4, 95124 Catania (Italy)
and
SERGIO CLEMENTI and GIANFRANCO GIULIETTI
Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 10, 06100 Perugia (Italy)
(First received December 30th, 1983; revised manuscript received March 14th, 1984)

Abstract

SUMMARY

The R_{F} values of 55 drugs in 40 eluent mixtures are reported. Principal components analysis of these data provides a four-significant-components model, which explains $\mathbf{9 2 \%}$ of the total variance. This analysis, showing that the eluent mixtures cluster into different groups according to their information content, provides a reliable criterion for the choice of optimal eluents.

Four eluent mixtures [ethyl acetate-methanol-30\% ammonia (85:10:5), cyclohexane-toluene-diethylamine (65:25:10), ethyl acetate-chloroform (50:50) and acetone with the plate dipped in potassium hydroxide solution], chosen on the basis of the above criterion and of the R_{F} reproducibility, provide a two significant principal components model that can be used for the identification of unknown samples.

INTRODUCTION

The advantages of thin-layer chromatography (TLC) as a sensitive, simple and rapid method for the identification of organic compounds are well known. However, the applications of TLC in the identification of drugs in forensic toxicology and related fields have been severely limited by the problems related to (a) the choice of an objective criterion (i.e., an appropriate statistical approach) that utilizes the information provided by the R_{F} values in different eluent systems to achieve the identification of unknowns; (b) the selection of the minimum number of suitable eluent systems (each providing a different piece of information); and (c) the poor reproducibility of R_{F} data in some eluent mixtures.

Extensive work in this area has been carried out by Stead et al. ${ }^{1}$, who reported
the R_{F} values of almost 800 basic, neutral and acidic drugs in eight carefully standardized TLC systems, ordering the drugs according to their increasing R_{F} values in each eluent, in order to facilitate the identification of unknown samples. The same group ${ }^{1-4}$ has also investigated the individual information for each eluent system and the correlation between the systems using the discrimination power.

The possibility of using information theory for characterizing TLC separations has been investigated by Massart ${ }^{3}$ and the merits of different solvents used for the separation of the same group of compounds have been compared. Application of numerical taxonomy techniques to the choice of optimal sets of solvents in TLC has also been reported ${ }^{6,7}$ and paper and thin-layer chromatographic separations of phenolic compounds were classified into clusters according to their selectivities ${ }^{8}$.

Following previous applications of multivariate analysis to gas chromatographic ${ }^{9,10}$ and TLC ${ }^{11}$ data, we have recently pointed out the potential of principal components analysis (PCA) as a suitable statistical approach both for the identification of unknown samples and for the evaluation of the information content of the eluent systems ${ }^{12,13}$. PCA is able to reduce the number of measurements to 'object' scores (θ parameters) that characterize the compounds in a two- or three-dimensional space, allowing a graphical representation that makes the identification of unknowns easier with respect to earlier approaches based on R_{F} values reported in tables ${ }^{1}$. Moreover, in contrast with previous procedures defining the information content of each single eluent mixture as if it were to be used alone ${ }^{5-7}$ or correlating two systems at a time ${ }^{1-4}$, PCA gives a direct measure of the spanning properties of each system in combination with the others, thus directly providing information on the minimum number of systems that are needed and the criterion for their selection. As the interdependence of TLC data is well known ${ }^{14}$, the superior ability of PCA over regression methods in detecting multivariate patterns is expected (for a comparison of PCA with other approaches adopted in TLC, see ref. 12).

The application of PCA to R_{F} data for 54 drugs in eight eluent mixtures ${ }^{12}$ and 596 basic and neutral drugs in four eluent mixtures ${ }^{13}$ allowed the characterization of the drug on a plane by two principal component parameters (θ values), leading to a drastic restriction of the range of inquiry to a few candidates and, in many instances, to the unambiguous identification of the drug. In both of the examined cases, however, the principal component parameters characteristic of the eluent mixtures (β values) indicated grouping of the eluents, with the eluents in each group providing approximately the same information.

Following these studies, aimed at the development of the applications of TLC as a cheap, rapid and reliable method for the identification of organic compounds, we report here the PCA of the R_{F} values of 55 basic and neutral drugs in 40 solvent mixtures with the purpose of selecting the minimum number of eluent systems having the maximum information content.

The drugs examined, which belong to various classes of compounds (tranquillizers, analgesics, natural and synthetic opiates, alkaloids, anthistamines, local anaesthetics, etc.) differing in their structural and biological properties, can all be detected with Dragendorff reagent. The eluent mixtures were chosen from those available in the literature and include those already analysed by PCA ${ }^{12,13}$. In order to achieve a rapid determination and to improve sensivity and reproducibility, silica gel HPTLC plates were used.

TABLE I

CHARACTERISTICS OF ELUENT MIXTURES 1-40

No.	Eluent mixture (v/v)	Plate	
			Reprodu-
cibility			

[^0]TABLE II
$\boldsymbol{R}_{\boldsymbol{F}} \times 100$ VALUES FOR COMPOUNDS 1-55 IN ELUENTS $1-40$

$\begin{array}{lllllllllllllllllll}19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 \\ 38 & 39 & 40\end{array}$

```
73 58 62 59 67 62 13 23 11 10 59 63 50 54 44 34 85 8243 47 61 76
39 37 48 12 26 59 2 15 3
```



```
836674698878 31 77 39 70 69 85 62 84 43 76 85 87 81 59 58 92
26 28 35 7 16 50 0 4 0 0 3 13 37 23 43 8 16 48 67 52 25 29 79
6548644481 76 9 53 15 48 45 76 44 72 25 47 73 85 80 49 46 93
1928 35 8 1044 0 00 0
19 14 31 2 2 7 29 0
8765716585 76 25 64 20 48 64 81 56 77 45 68 85 87 74 49 62 88
57 59 63 53 54 55 16 20 9 9 8 53 56 46 50 41 40 82 80 70 48 58 62
20 15 32 3-7lllllllllllllllllllll
38 364713 3260 218 2 7 7 23 50 304817 29 61 77 63 41 34 86
55 9112 7 14 42 0
27 3042 6 16 62 0 4 4 0 4 11 44 24 46 5 15 50 72 65 23 35 74
5742 60 35 73 71 5 5 34 8 80 29 67 34 63 21 44 67 79 40 49 44 86
21 24 32 4 4 8 21 0
54 44 50 15 32 59 416 5 5 9 36 57 38 57 20 30 73 80 64 45 42 82
13 8 28 1 1 4 15 1 1 2 0 0 1 1 8 16 13 32 4 4 942 54 78 3 11 65
87 58 55 80 81 75 3840 28 23 73 71 4447 38 33 83 81 90 65 72 75
304346 13 25 13 00 6
87 78 78 81 83 73 52 57 45 44 78 78 67 70 66 60 89 88 89 67 75 82
40 31 44 13 29 60 1 11 3 7 20 48 31 50 13 24 54 72 62 31 39 82
85 78 80 82 83 74 55 58 41 40 78 77 66 68 74 68 89 88 89 67 72 82
664753 36 67 70 5 18 5 11 43 62 39 53 21 29 77 83 53 49 51 83
74 31 44 27 68 74 214 2 7 7 34 58 27 46 12 20 65 76 89 48 49 83
77 45 52 20 59 68 1 13 1 1 54 42 60 40 54 19 28 78 82 72 48 55 74
32 32 46 10 22 57 0
85 24 39447971419 519 1144 63 20 42 9018 57 70 90 48 56 71
79656474 80 72 37 56 25 33 64 74 53 66 45 55 84 85 67 49 63 83
8471 74 67 83 73 29 56 16 37 68 79 60 76 53 67 87 87 52 49 62 83
85 71 827084 80 24 50 16 41 67 81 66 75 49 62 87 90 51 47 72 78
79 47 42 76 69 74 23 20 20 11 64 58 41 39 20 21 76 73 89 57 81 61
53 50 72 35 81 83 2 22 7 35 41 71 45 68 20 32 76 89 74 47 48 84
29 21 34 13 51 75 0
```



```
52 36 54 174769 0010 2 10 29 60 31 55 13 25 58 78 72 34 48 73
3023 34 10 21 8 0 0 3 0 2 13 31 15 36 7 7 11 47 63 35 17 34 68
18
77 6768 74 80 76 16 32 17 28 68 71 53 57 38 41 85 85 62 49 75 64
41 34 49 11 34 66 0 7 7 2 9 20 56 30 53 11 24 53 77 62 31 45 75
8079 8266 72 74 23 3419 29 72 78 64 72 48 50 92 92 62 47 79 70
59 23 32 16 57 75 0
57 26 36 1741 66 0}5
40}38491023 57 0 5 5 2 5 5 23 52 33 51 12 27 61 78 54 34 46 71
84 57 56 78 82 75 39 31 24 26 70 73 43 48 40 39 82 79 88 56 86 67
78 38 48 42 75 79 4 15 8 31 51 72 28 46 13 20 70 78 88 48 57 75
746064 60 65 68 1217 13 15 59 68 51 57 31 31 84 85 43 49 75 68
58}55563 31 43 65 11 17 9 15 46 61 48 61 26 32 77 85 47 47 57 68,
```

TABLE II (continued)

No.	Compound	Eluent																		
			2	3	4	5	56		7		9	10					15	16	17	
49	Phendimetrazine bitartrate	6454756			62	86	67	78	39	36	36	38	71	63	62	34	55	6	14	
50	Pirenzepine	15	5	15	39	59	18	31		0	0	5	29	3	8	12	1	0	1	
51	Prazepam	81	83	86	83	88	81	89	4	13	313	35	83	66	82	75	74	65	67	
52	Procaine	64	60	70	65	82	73	85		8	51	16	66	24	54	37	50	1	11	29
53	Promazine	64	53	79	47	87	70	79	4		41	42	73	63	66	26	56	0	6	1
54	Strychnine	47	33	50	28	78	47	49	1			18	56	42	40	22	13	36	0	
55	Thenyldiamine		57	80	53	86	72	80	4	4	41	42	74	65	66	29	59	1	6	1

The R_{F} determinations were carried out independently in two laboratories where the eluent mixtures were freshly prepared.

EXPERIMENTAL

R_{F} Measurements

The eluent mixture compositions are reported in Table I, together with an estimate of the reproducibility of the R_{F} measurements for all 55 compounds.

Each drug (10 mg) was dissolved as the hydrochloride (except where stated otherwise) in methanol (10 ml). All drug solutions were freshly prepared and aliquots ($4 \mu \mathrm{l}$, containing $4 \mu \mathrm{~g}$ of drug) were applied approximately 1 cm apart to 10×20 cm silica gel $60 \mathrm{~F}_{254}$ HPTLC plates (Merck). In some instances (b in Table I) the plates were dipped in 0.1 M potassium hydroxide solution and dried before application of the drugs; in other instances (c in Table I) the plates, after application of the drugs, were placed in a tank saturated with 30% ammonia solution and kept there for 30 min before being quickly transferred into the elution tank.

The solvents (100 ml) were placed in TLC tanks, which were sealed and allowed to equilibrate for at least 30 min before use. The systems were run for 5 cm from the baseline. The solvent front was marked and the plates were air-dried. The drugs were detected using Dragendorff spray reagent, after spraying with 10% sulphuric acid.

The R_{F} values were measured independently in two laboratories where the eluent mixtures were freshly prepared using commercial solvents often provided by different companies. The R_{F} values are uncorrected. The $R_{F} \times 100$ data for compounds 1-55 in eluent mixtures 1-40 reported in Table II are averages of four determinations (two in each laboratory). The reproducibilities reported in Table I include both intra- and inter-laboratory errors.

Principal components analysis

PCA using the SIMCA method ${ }^{15-18}$ and its application to the identification of drugs by TLC in different eluent systems ${ }^{12,13}$ have been reported in detail. In the present instance, the matrix Y with the elements $y_{i k}$, contains R_{F} values where subscript i is used for the eluent mixtures (variables) and k for the compounds (objects). From this data matrix, the number of significant product terms A and the parameters

```
19}2020142223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
```

57	51	61	30	39	65	6	13	6	11	42	60	46	60	24	30	76	82	46	46	54	68
15	4	12	0	3	7	0	0	0	0	3	8	4	11	0	1	18	43	18	5	27	29
88	89	82	84	85	80	55	59	58	60	30	84	73	74	62	58	92	91	91	73	89	79
53	23	40	25	57	70	1	7	2	9	20	55	16	40	7	21	41	70	48	33	54	68
26	29	43	8	22	57	0	6	1	4	13	43	26	47	8	21	46	72	50	18	35	72
11	27	36	3	5	14	0	2	0	0	7	19	19	38	10	15	48	66	33	8	15	61
32	41	56	9	21	60	0	6	1	6	20	51	38	57	14	26	60	81	53	24	43	72

$\alpha_{i}, \beta_{i a}$ and $\theta_{a k}$ in eqn. 1 are estimated by minimizing the sum of the cross-validated squared residuals $\varepsilon_{i k}$.

$$
\begin{equation*}
y_{i k}=\alpha_{i}+\sum_{a=1}^{A} \beta_{i a} \theta_{a k}+\varepsilon_{i k} \tag{1}
\end{equation*}
$$

In this model, α_{i} and $\beta_{i a}$ are constants which are dependent only on the eluent mixtures and $\theta_{a k}$ are the compound-dependent parameters. The deviations from the model are expressed by the residuals $\varepsilon_{i k}$.

Before the PCA computation, the eluent values were autoscaled (see, e.g., ref. 18), i.e., the variables were given the same variance (fixed to unity). With this scaling, all variables were given the same importance in the PCA.

After a model has been determined with autoscaling, it can be refined by a reweighing of the variables, in this instance by multiplying each variable with its modelling power ψ_{i}, defined as

$$
\begin{equation*}
\psi_{i}=\left(1-s_{i} / S_{i y}\right) \tag{2}
\end{equation*}
$$

Here s_{i} and $S_{i y}$ are the residual standard deviations for variable i with A significant components and with $A=0$ respectively. This means that variables for which the $\beta \theta$ terms contain no or little information will have modelling powers close to zero. Thus with this type of reweighing, such variables are given small weights.

RESULTS AND DISCUSSION

PCA with forty variables (autoscaled model)

The R_{F} values were arranged into a matrix (see Table II) with the compounds as 'objects' and the eluent mixtures as 'variables'. Each of the 2200 elements of the matrix is indicated in eqn. 1 as $y_{i k}$.

The variables (R_{F} values for each eluent mixture) were first autoscaled ${ }^{18}$. Each element was multiplied by the weight typical of the eluent (the reciprocal of the standard deviation of the variable) in order to give unitary variance to each eluent

TABLE III
WEIGHTS, $\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ AND RESIDUAL VARIANCES AFTER THREE PRINCIPAL COMPONENTS, $s_{i}{ }^{2}(3)$ FOR VARIABLES (ELUENT MIXTURES) 1-40 (AUTOSCALED MODEL)

Eluent mixture	Variable					
	Weight	α	β_{1}	β_{2}	$\boldsymbol{\beta}_{3}$	$s_{i}{ }^{2}(3)$
1	0.0586	3.6948	-0.1664	-0.1703	0.0931	0.0341
2	0.0466	2.6958	-0.1677	-0.1536	0.0532	0.0842
3	0.0547	3.7615	-0.1512	-0.2010	0.1180	0.0521
4	0.0626	3.7899	-0.1619	0.1208	0.2468	0.0795
5	0.1278	10.5633	-0.1427	-0.1970	0.1269	0.1280
6	0.0605	4.0743	-0.1519	-0.1910	0.1260	0.0760
7	0.0691	5.3803	-0.1659	-0.0707	0.2959	0.0675
8	0.0519	1.5738	-0.0801	-0.2911	-0.1537	0.0832
9	0.0511	1.3541	-0.0664	-0.2940	-0.1513	0.1239
10	0.0738	2.0917	-0.0899	-0.2682	-0.1245	0.1696
11	0.0653	4.4863	-0.1535	-0.1913	0.0138	0.0983
12	0.0450	2.2829	-0.1037	-0.2679	-0.1691	0.0683
13	0.0500	2.9952	-0.1343	-0.2369	-0.0755	0.0629
14	0.0548	2.2420	-0.1856	0.0668	-0.0513	0.0816
15	0.0423	1.9423	-0.1224	-0.2514	-0.1002	0.0731
16	0.0620	0.6935	-0.1347	0.1699	-0.2526	0.1651
17	0.0525	0.9240	-0.1698	0.0730	-0.2311	0.1085
18	0.0383	1.5007	-0.1502	0.2126	0.0666	0.0396
19	0.0390	2.0400	-0.1655	0.1492	0.1744	0.0516
20	0.0469	1.8990	-0.1803	0.0822	-0.0898	0.1013
21	0.0525	2.5682	-0.1854	0.0109	-0.0504	0.1225
22	0.0354	1.1192	-0.1649	0.1759	-0.0408	0.0469
23	0.0337	1.5601	-0.1752	0.0994	0.1377	0.0974
24	0.0432	2.4662	-0.1674	-0.0136	0.2775	0.1207
25	0.0648	0.6454	-0.1460	0.1701	-0.2289	0.1057
26	0.0492	0.9545	-0.1737	0.0721	-0.2166	0.0883
27	0.0774	0.7033	-0.1527	0.1406	-0.2389	0.1216
28	0.0589	0.9151	-0.1702	0.0447	-0.2047	0.1603
29	0.0411	1.4651	-0.1739	0.1559	0.0063	0.0266
30	0.0466	2.4610	-0.1907	0.0296	0.1337	0.0266
31	0.0550	1.8779	-0.1825	0.0582	-0.1131	0.0989
32	0.0590	2.9119	-0.1855	-0.0665	-0.0639	0.0796
33	0.0540	1.1545	-0.1671	0.1327	-0.1870	0.0674
34	0.0531	1.5119	-0.1809	0.0354	-0.1949	0.0752
35	0.0485	3.0458	-0.1798	0.0676	0.0679	0.1334
36	0.0678	4.9634	-0.1772	-0.0189	0.1270	0.1692
37	0.0512	3.1144	-0.1162	0.0528	0.2079	0.5690
38	0.0546	2.0098	-0.1787	0.0836	0.1518	0.0804
39	0.0518	2.5075	-0.1532	0.1749	0.1492	0.1028
40	0.0712	5.1073	-0.1493	-0.1850	0.0960	0.1331

mixture. Weights for individual variables 1-40 are recorded in Table III*.
The PCA of the data matrix (Table II) gave a four significant principal components model, according to the cross-validation technique ${ }^{17}$. The first component

[^1]explains 62% of the total variance, the second one a further 21%, the third one a further 6% and the fourth one a further 3%; the four components model then accounts for 92% of the total variance. However, the residual variances after three components reported in Table III are low for all variables (eluents) except 37, and do not vary significantly by adding a fourth principal component, showing that the three-component model, accounting for 89% of the total variance, describes satisfactorily the systematic behaviour of all eluents except 37 . The latter eluent mixture, containing acetic acid, is peculiar and can be better modelled by adding a fourth component $\left[s_{i}{ }^{2}(4)\right.$ for $37=0.2367 ; c f . s_{i}{ }^{2}(3)=0.5690$ in Table III], which explains only a further 3% of variance. In other words, the fourth component, which has a very low information content, is required only to describe the peculiar behaviour of eluent mixture 37.

Table IV lists the θ_{1}, θ_{2} and θ_{3} values for each of the compounds 1-55, together with their residual standard deviations s_{k} from the three principal components model. The θ values indicate the position of each point along each new dimension defining the three-dimensional model, whereas the s_{k} values give the distance of each compound from the model. The critical distance for the compounds to be considered belonging to the model is evaluated by the appropriate statistical F-test ${ }^{15}$. In the present instance, according to the F-test at the 99% confidence level, compounds with residual standard deviations lower than 0.42 lie within the confidence interval around the three-dimensional model.

Table IV shows that benzphetamine (4), biperiden (6), cimetidine (13), desipramine (18), diamorphine (20), strychnine (54) and probably atropine (3) and methadone (34) are 'outliers'. These compounds might be omitted from further PCA, in order to obtain improved models. However, as our main objective is to utilize PCA for the identification of unknown drugs, we decided not to exclude any of the compounds in the four-variables model (see below).

Figs. 1 and 2 , showing plots of θ_{2} vs. θ_{1} of $\theta_{3} v s . \theta_{2}$ (i.e., the projections of the points identifying each compound into the $\theta_{1}-\theta_{2}$ and $\theta_{2}-\theta_{3}$ planes) indicate the nonhomogeneity in the examined set of drugs, which is a direct consequence of the analytical purpose of this study. In fact, the drug set was formed by selecting a few representatives from each group of drugs exhibiting the same pharmacological properties (analgesics, antidepressants, antihistamines, local anaesthetics, tranquillizers, antiulcer agents, parasympatholytics, anorectics, antispasmodics, central stimulants, neurological psycotonics, vasodilators) choosing, within each group, compounds of very similar chemical structure in order to find eluents able to differentiate between them.

In this context, Figs. 1 and 2 are not expected to provide much information for purposes of classification of drugs 1-55. However, we note that in both Figs. 1 and 2 , the anthistamines $14,17,22$ and 55 are grouped and very close to a compact group of anthistamines with almost identical chemical formulae (brompheniramine base 7, brompheniramine maleate 8 and chlorpheniramine 11).

Table III reports the 'loading' parameters, i.e., the $\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ values for eluent mixtures $1-40$, which define the model.

Fig. 3, where the β_{2} values are plotted against β_{1}, shows that all eluents lie on the left-hand side with respect to the origin (i.e., all eluents contain the same major information) and shows the existence of three groups of eluents: (A) including mix-
TABLE IV
θ_{1}, θ_{2} AND θ_{3} VALUES IN THE AUTOSCALED PRINCIPAL COMPONENTS MODEL USING 40 VARIABLES, RESIDUALS AFTER THREE PRINCIPAL COMPONENTS, $s_{k}(3)$ AND θ_{1} AND θ_{2} VALUES IN THE REFINED MODEL USING FOUR VARIABLES FOR OBJECTS (COMPOUNDS) 1 -

Object (compounds)		Forty variables (autoscaled model)			$s_{k}(3)$	Four variables (refined model)	
No.	Name	θ_{1}	θ_{2}	θ_{3}		θ_{1}	θ_{2}
1	Amidopyrine	-2.3693	1.4677	0.2968	0.4166	-0.1229	0.3270
2	Amitriptyline	- 0.5093	-4.0292	0.1179	0.2017	-0.6354	-1.0528
3	Atropine	10.6440	1.8551	-2.5929	0.4314	1.9923	-0.0281
4	Benzphetamine	- 9.5790	-1.9289	-3.2061	0.5318	-1.9327	0.0166
5	Benzydamine	2.6264	-2.9522	0.1191	0.1633	-0.0640	-0.8519
6	Biperiden	- 5.9234	-3.9491	-0.9465	0.4485	-1.6587	-0.5777
7	Brompheniramine base	4.4553	-2.1312	-0.8103	0.2587	0.4587	-0.7227
8	Brompheniramine maleate	4.9836	-2.5432	-0.8661	0.2502	0.3732	-0.8047
9	Bupivacaine	- 7.2282	-0.0025	-1.1792	0.3211	-1.1688	0.2818
10	Caffeine	- 0.2783	3.5501	0.3311	0.3564	0.7077	0.6481
11	Chlorpheniramine	4.9171	-2.4060	-0.8724	0.2541	0.3732	-0.8047
12	Chlorpromazine	- 0.1869	-3.5479	0.3102	0.1997	-0.6040	-0.8892
13	Cimetidine	8.2743	5.4141	0.9945	0.5190	2.0337	0.2167
14	Clemastine	1.7668	-3.8825	0.1321	0.2285	-0.1365	-1.0177
15	Cocaine	- 2.8895	-2.4862	0.0256	0.3523	-0.9131	-0.1989
16	Codeine	6.7421	1.2736	-0.9447	0.2019	1.4901	-0.1641
17	Cyclizine	- 1.0372	-2.5300	0.4357	0.2384	-0.4997	-0.7972
18	Desipramine	6.0884	-1.2738	-1.4273	0.4435	0.8451	-0.5882
19	Desmethyldiazepam	- 4.0432	4.6477	0.8121	0.3349	-0.3002	1.4083
20	Diamorphine	2.7420	-0.3553	-0.0701	0.4643	0.6015	-0.2402
21	Diazepam	- 8.1973	3.0524	-1.9231	0.2915	-1.0268	1.2776
22	Diphenydramine	0.5246	-3.1781	0.4156	0.1396	-0.4555	-0.8725
23	Flunitrazepam	- 7.7974	3.7079	-1.5753	0.3783	-0.7796	1.3765

Fig. 1. Plot of θ_{2} vs. θ_{1} for drugs 1-55.

Fig. 2. Plot of θ_{3} vs. θ_{2} for drugs 1-55.
tures containing diethylamine ($8-10,12,13$ and 15); (B) eluents with 30% ammonia solution ($1-3,5$ and 6), one with diethylamine (11) and that with triethylamine (40); and (C) all the others, which are mixtures of neutral organic solvents, plus 4 and 14 , which contain low concentrations of 30% ammonia solution and diethylamine, respectively. Eluent mixture 7, containing more dilute ammonia solution (7.5%), lies between groups B and C. Fig. 3 also confirms the peculiar behaviour of eluent mixture 37, already indicated to contain its own individual information.

Treatment of the plate with potassium hydroxide solution results in a decrease in both β_{1} and β_{2} values (cf., 22-23 and analogous eluent pairs), and a drastic decrease in β_{2} is observed when, before elution, the plate is placed in a tank saturated with ammonia solution (eluent 24).

Fig. 4, where β_{3} is plotted against β_{2}, shows a uniform distribution of the eluents around the origin $(0,0)$, which lies approximately in the middle of the plot. Groups A and B, already evidenced by the β_{2} vs. β_{1} plot (Fig. 3), are present in this plot also, while eluents in former group C (Fig. 3) are now better differentiated by their β_{3} values and a new group, D , can be identified in the lower right-hand corner of the plot.

The information provided by Fig. 3 and 4 is suitable for the evaluation and selection of eluent mixtures.

Evaluation and selection of eluent mixtures

The factors considered to be most important for the selection of suitable TLC

Fig. 3. Plot of $\boldsymbol{\beta}_{2}$ vs. $\boldsymbol{\beta}_{1}$ for variables $1-40 ; 0$ indicates origin $(0,0)$.

systems are as follows ${ }^{4}, 19$: (1) distribution of chromatographic values over the useful range of the system; (2) correlation between systems when more than one is used; (3) speed; (4) reproducibility; and (5) sensitivity. In the present instance, the use of HPTLC plates improves the speed, the reproducibility and the sensitivity. The distribution of chromatographic values in the systems examined can be evaluated from Table II, while Table I reports an estimate of the R_{F} reproducibility in each eluent mixture for all the compounds examined. In this study, the evaluation of the different information contents of the eluent systems and the criteria for their selection are achieved by PCA.

We shall now discuss the information provided by PCA on how systems can be selected and how many of them are needed, and then propose a set of eluents on the basis of the above criteria and of the desired properties of 'optimum' eluents.

An important piece of information on which eluent mixtures are to be selected is provided by Fig. 4, which suggests that three eluents should be picked from groups A, B and D , respectively (each group providing different information). We note that group D includes eluents in which the R_{F} values for many compounds (basic drugs) are very close to zero, the R_{F} values not being distributed over a satisfactory range. However, we believe that a representative of this group should be included in the 'optimum' set as it is able to distinguish basic from neutral drugs.

The presence of the origin (0,0) in Figs. 3 and 4 gives a further criterion of selection: the lines joining the eventually selected eluents with the origin should not lie in the same or close directions. In fact eluents that lie on the same line are very
similar to each other (provide the same information): the closer they are to the origin the less systematic variation they have.

Another piece of information provided by PCA is the number of independent effects generating the data structure, i.e., the number of significant principal components. As the number of significant groups is spanned by the same number of components, four eluents should be selected. In this respect, from a purely statistical point of view, as the fourth component is required to describe the behaviour of eluent 37, this system should be included in the 'optimum' set. However, owing to the peculiarity of this eluent mixture (containing a protic acid such as acetic acid), which has only a very small information content (only 3% of the total variance is explained by the fourth principal component), we decided not to include it in the 'optimum' set. As a consequence, the number of eluents selected should be limited to three. However, in consideration of the unsatisfactory R_{F} distribution in group D and of the fact that in Fig. 4 a significant region of the plot would remain uncovered by choosing only representatives of groups A, B and D, we decided to include four eluents in the 'optimum' set in order to improve the capacity for the identification of unknowns of the resulting principal component model.

On the basis of the above statistical considerations, of the R_{F} reproducibility (Table I), of the R_{F} distributions (Table II) and of the shape of the spots after elution, we chose eluents 6,8 and 16 as representatives of groups B, A and D, respectively. As the fourth system, which should lie in a direction as different as possible from those of the three already selected, eluent 23 (acetone) was preferred to 19 (butanol-methanol, 40:60) for its simplicity (it is a pure solvent) and for the better shape of the spots. Eluents 4 and 38 were not taken into consideration owing to the poor R_{F} reproducibility (see Table I).

PCA with four variables (autoscaled model)

PCA was then repeated using only the selected variables (eluent mixtures 6, 8 , 16 and 23) in order to check if this choice was really useful for our identification purposes, i.e., if the information contained in these four eluents is representative enough of all possible systems. A two components model which explained 66% of the total variance was obtained by autoscaling. The modelling power ψ_{2} for each variable, reported in Table V , permitted the calculation of new weights by which the refined model (see below) was worked out.

PCA with four variables (refined model)

The principal components model can now be refined by reweighing the variables. The new weights are obtained multiplying the weights for each variable listed in Table III by the modelling powers ψ_{2} listed in Table V. The data analysis again provides a two components model (a plane), in which the first component explains 40% of the residual variance and the second one a further 35%; the model then shows that 75% of the residual variance after refinement is systematic. However, as part of the variation is now included in the weights, the fraction of variance remaining unexplained by the refined model is as low as 15%. Accordingly, the capability of the planar model with four eluents to describe the data set is comparable to that of the three-dimensional model with 40 systems and no significant loss of information is involved in the reduction of eluents from 40 to 4.

TABLE V
MODELLING POWER ψ_{2} IN THE AUTOSCALED FOUR VARIABLES MODEL, AND REFINED WEIGHT, α, β_{1} AND β_{2} IN THE REFINED FOUR-VARIABLES MODEL FOR VARIABLES (ELUENT MIXTURES) 6, 8, 16 AND 23

Eluent mixture	Variable				
	ψ_{2}	Refined weight	α	β_{1}	β_{2}
6	0.6995	0.0423	2.8500	-0.6973	-0.1272
8	0.6745	0.0350	1.0615	-0.5114	-0.5779
16	0.5621	0.0349	0.3898	-0.2411	0.5906
23	0.6153	0.0207	0.9599	-0.4407	0.5487

The new weights together with the α, β_{1} and β_{2} values for the refined model are recorded in Table V .

In the $\beta_{1} v s, \beta_{2}$ plot (Fig. 5), eluents 6, 8, 16 and 23 lie in the same position as in the plot obtained from the 40 variables model (Fig. 3), confirming that the selected systems have a different information content, as they are properly spread along the arch formed by the 40 eluents.

The principal components parameters reported in Table V could be used for calculating t_{1} and t_{2} values for unknowns from the equation

$$
\begin{equation*}
t_{a k}=\Sigma\left(100 R_{F_{i}} w_{i}-\alpha_{i}\right) \beta_{i a} \tag{3}
\end{equation*}
$$

where, in the present instance, $a=1$ and 2 . These t values could be compared with the $\theta_{a k}$ values of the samples used as training set in the four variables model (Table

Fig. 5. Plot of β_{2} vs. β_{1} in the four variables refined model; 0 indicates origin $(0,0)$.
IV) to identify unknowns, provided that they are included in the examined set (see refs. 12 and 13). The small number of compounds in this set, however, precludes the use of eqn. 3 for the general purpose of identifying any unknown, which is outside the scope of this study.

CONCLUSIONS

This work confirms that PCA is a suitable method for the evaluation and selection of eluent systems in TLC. On the basis of PCA and of other practical considerations (reproducibility, shape of the spot, etc.) we have proposed a minimum set of eluents that contains virtually all the information obtainable from a much larger set and could be conveniently used for the identification of unknowns.

We are aware that the selection of 'optimum' eluent mixtures represents a subjective choice. However, this decision can be made as 'objective' as possible by the use of an appropriate statistical procedure such as PCA, which gives a simple graphical representation of the relationships between the information provided by individual eluents.

ACKNOWLEDGEMENTS

We thank Professor Svante Wold (Umeå University, Sweden) for helpful discussions and for providing the SIMCA package; financial support (to S. C. and G. M.) by the Ministero della Pubblica Istruzione to a research project on chemometrics is also gratefully acknowledged.

REFERENCES

1 A. H. Stead, R. Gill, T. Wright, J. P. Gibbs and A. C. Moffat, Analyst (London), 107 (1982) 1106.
2 A. C. Moffat and K. W. Smalldon, J. Chromatogr., 90 (1974) 9.
3 P. Owen, A. Pendlebury and A. C. Moffat, J. Chromatogr., 161 (1978) 187.
4 P. Owen, A. Pendlebury and A. C. Moffat, J. Chromatogr., 161 (1978) 195.
5 D. L. Massart, J. Chromatogr., 79 (1973) 157.
6 D. L. Massart and H. de Clerq, Anal. Chem., 46 (1974) 1988.
7 H. de Clercq and D. L. Massart, J. Chromatogr., 115 (1975) 1.
8 L. Nagels, J. Chromatogr., 209 (1981) 377.
9 G. Blomquist, E. Johansson, B. Söderström and S. Wold, J. Chromatogr., 173 (1979) 7.
10 B. Söderström, S. Wold and G. Blomquist, J. Gen. Microbiol., 128 (1982) 1773.
11 D. Carbone, G. Musumarra, S. Occhipinti, G. Scarlata and S. Wold, Ann. Chim. (Rome), 73 (1983) 183.

12 G. Musumarra, G. Scarlata, G. Romano and S. Clementi, J. Anal. Toxicol., 7 (1983) 286.
13 G. Musumarra, G. Scarlata, G. Romano, S. Clementi and S. Wold, in preparation.
14 K. A. Connors, Anal. Chem., 46 (1974) 53.
15 S. Wold and M. Sjöström, in B. Kowalski (Editor), Chemometrics, Theory and Application (ACS Symposium Series, No. 52), American Chemical Society, Washington, DC, 1977, p. 243.
16 C. Albano, G. Blomquist, D. Coomans, W. J. Dunn, III, U. Edlund, B. Eliasson, S. Hellberg, E. Johansson, B. Norden, M. Sjöström, B. Söderström, H. Wold and S. Wold, in A. Höskuldsson et al. (Editors), Proceedings, Symposium i Anvent Statistik, Copenhagen, NEUCC, RECAU, RECKU and the Danish Society of Theoretical Statistics, 1981, p. 183.
17 S. Wold, Technometrics, 20 (1978) 397.
18 S. Wold, in D. L. Massart. A. Dijkstra and L. Kaufman, Evaluation and Optimization of Labaratory Methods and Analytical Procedures, Elsevier, Amsterdam, 1978, pp. 385 and 423.
19 A. C. Moffat and B. Clare, J. Pharm. Pharmacol., 26 (1974) 665.

[^0]: * a, Not treated; b, dipped in 0.1 M potassium hydroxide methanolic solution and dried; c, after application of the drugs, the plate was kept for 30 min in a tank saturated with $\mathbf{3 0 \%}$ ammonia solution and then transferred into the elution tank.
 ${ }^{* *}+++$, All measurements for all compounds deviating less than 7% from the average; ++ , some individual measurements for some of the compounds deviating between 7 and 14% from the average; + , some individual measurements for some of the compounds deviating more than 14% from the average.

[^1]: * It should be noted that the variable weights depend only on the range covered by the 55 average R_{F} values in each solvent, and they have nothing to do with the reproducibility of individual eluents, which is used only for the selection of the best eluent within groups of similar ones, and is not used in the statistical analvsis.

